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1. Introduction

In 1769 Euler conjectured that the equation

An
1 + An

2 + · · ·+ An
n−1 = An

n

has no positive integer solutions for n ≥ 3. The case n = 3 corresponds to the
case A3 + B3 = C3 of Fermat’s last theorem and was proven to have no nontrivial
solutions by Fermat himself. However, for n ≥ 4 the conjecture was open until
1966, when Lander and Parkin in [6] found the following counterexample for n = 5
by computer search:

275 + 845 + 1105 + 1335 = 1445.

The only other known primitive solution for n = 5 was found by J. Frye in August
2004:

555 + 31835 + 289695 + 852825 = 853595.

(See [7] for a large collection of identities involving sums of like powers.) While these
solutions are small enough to have been found without the use of much theory, the
first counterexamples to the n = 4 case,

A4 + B4 + C4 = D4,(1)

were found by reducing the problem to that of finding rational points on elliptic
curves. In 1988 Elkies found the solution

26824404 + 153656394 + 187967604 = 206156734,

and shortly after, R. Frye found the smallest counterexample to Euler’s conjecture
for n = 4:

958004 + 2175194 + 4145604 = 4224814.

For every primitive solution to (1), Elkies’s method provides infinitely many addi-
tional primitive solutions; these are obtained via the group law on an elliptic curve.
In the current account, we follow Elkies’s paper [5] in showing the role of elliptic
curves in the discovery of Elkies’s first solution and how to obtain other solutions.
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Six solutions to (1) are currently known that were not discovered from other
points via the group law:

13904004 + 27676244 + 6738654 = 28130014,

55078804 + 83322084 + 17055754 = 87074814,

58700004 + 112890404 + 82825434 = 121974574,

125522004 + 141737204 + 44790314 = 160030174,

36428404 + 70286004 + 162810094 = 164305134,

2190764654 + 2751562404 + 6306626244 = 6385232494.

The solutions D = 2813001 and D = 638523249 were found by MacLeod using
Elkies’s method (on a different elliptic curve than Elkies’s), and the other four were
found by Bernstein using an algorithm that does not employ elliptic curves. See [7]
and [1] for more details.

It is interesting to note that, in light of these counterexamples and other identities
involving sums of like powers, an “Euler’s extended conjecture” has been formulated
by Ekl in [4]. This revised version states that if

n∑
i=1

Ak
i =

m∑
j=1

Bk
j

for positive integers Ai, Bj with Ai 6= Bj for all i and j, then m + n ≥ k. No
counterexamples to this conjecture are known, and equality is achieved in the above
examples, where m = 1 and n = k − 1.

2. An Example

Finding an integral solution to (1) is equivalent to finding a rational point on
the surface given by the equation

(2) r4 + s4 + t4 = 1.

In [3] Demjanenko parametrizes the surface r4 + s4 + t2 = 1 as a family of conics
in the parameter u. Replacing t by ±t2 in this parametrization gives the following
parametrization of (2):

r = x + y, s = x− y;(3a)

(u2 + 2)y2 = −(3u2 − 8u + 6)x2 − 2(u2 − 2)x− 2u,(3b)

±(u2 + 2)t2 = 4(u2 − 2)x2 + 8ux− (u2 − 2).(3c)

These equations, along with (2), define a conic for each value of the parameter u.
To find rational points (r, s, t) on (2), our method will be to look for rational points
on (3) for fixed values of u.

For example, letting u = 0 gives the equations

y2 = −3x2 + 2x,

±t2 = −4x2 + 1.

The first conic has the obvious rational point (x, y) = (0, 0). We parametrize the
rational solutions as follows. The line of rational slope k passing through (0, 0)
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intersects y2 = −3x2 + 2x at another rational point,

(x, y) =
(

2
k2 + 3

,
2k

k2 + 3

)
,

so we have

±t2 = −4x2 + 1 =
k4 + 6k2 − 7

(k2 + 3)2
.

Introducing the variable z = (k2 + 3)t gives

±z2 = k4 + 6k2 − 7.

These two curves are of genus 1 and have the rational point (k, z) = (1, 0), so they
are elliptic curves. The change of variables k = 1 − 4/(1 ∓ X), z = 8Y/(1 ∓ X)2

puts them into Weierstrass form:

(4) Y 2 = X3 + X ∓ 2.

These appear as curves #112A and #56C in [2] (p. 96 and 87). The curve Y 2 =
X3 +X−2 has only two rational points: the point at infinity and (1, 0). The curve
Y 2 = X3 + X + 2 has only four rational points: the point at infinity, (−1, 0), and
(1,±2). The points (±1, 0) correspond to the trivial solution

r = x + y =
2 + 2k

k2 + 3
=

X2 − 1
X2 + 3

= 0,

s = x− y =
2− 2k

k2 + 3
=
±2X + 2
X2 + 3

= 1,

±t2 =
k4 + 6k2 − 7

(k2 + 3)2
= −4(X3 + X ∓ 2)

(X2 + 3)2
= 0

of (2), and the points (1,±2) correspond to the solution r = 0, s = 0, t = 1. By
projectivizing X 7→ X/Z, Y 7→ Y/Z, one finds that for both curves (4) the point
[X, Y, Z] = [0, 1, 0] at infinity corresponds to the solution 04 + 04 + 04 = 04 of (1).
Thus u = 0 does not yield any nontrivial rational points.

3. First Solution

We must choose a different value for u in order to find nontrivial solutions.
Fortunately, it is possible to narrow the search in several ways. First we show that
we need only consider rational u.

Note that since r = x + y and s = x− y, we have r4 + s4 = 2x4 + 12x2y2 + 2y4.
We solve (3b) for u and replace x 7→ (r + s)/2, y 7→ (r − s)/2 to find

u =
−1 + 4x2 ±

√
1− 2x4 − 12x2y2 − 2y4

2x + 3x2 + y2

=
−1 + (r + s)2 ±

√
1− r4 − s4

r2 + rs + s2 + r + s

=
−1 + (r + s)2 ± t2

r2 + rs + s2 + r + s
.

Therefore every rational solution (r, s, t) of (2) lies on the conic (3) for some rational
(or infinite) u.

Besides u being rational, we can restrict its form as follows. Replacing u by 2/u
in (3b) has the effect of applying the map (x, y) 7→ (−x, y). Similarly, replacing u by
2/u in (3c) has the effect of mapping (x, t2) 7→ (−x,−t2). Therefore the involution
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u 7→ 2/u simply takes (x, y, t2) 7→ (−x, y,−t2) and consequently (r, s) 7→ (−s,−r).
Since the two solutions (r, s, t) and (−s,−r, t) are so similar, we can eliminate the
redundancy by considering only u of the form 2m/n with (2m,n) = 1 and m ≥ 0,
since if u is not of this form then 2/u is.

Now (3b,c) become

(2m2 + n2)y2 = −(6m2 − 8mn + 6n2)x2 − 2(2m2 − n2)x− 2mn,(5b)

±(2m2 + n2)t2 = 4(2m2 − n2)x2 + 8mnx− (2m2 − n2).(5c)

For a nonzero integer n, define P (n) as the set of primes p dividing n with odd
exponent. That is, if n factors as n = ±pα1

1 · · · pαk

k , let

P (n) = {pi | αi ≡ 1 mod 2}.
For example, P (±pk) = {p} for prime p and odd k, and P (±n2) = ∅ for n 6= 0.
Vacuously, we have P (±1) = ∅.

The next lemma (of [5]) gives sufficient conditions for (5b,c) to have rational
solutions.

Lemma.
(1) The conic (5b) has infinitely many rational points (x, y) if every prime

p ∈ P (2m2 + n2) ∪ P (2m2 − 4mn + n2)

satisfies p ≡ 1 mod 8. Otherwise it has no rational points.
(2) The conic (5c) has infinitely many rational points (x, t) if every prime

p ∈ P (2m2 − 2mn + n2) ∪ P (2m2 + n2) ∪ P (2m2 + 2mn + n2)

satisfies p ≡ 1 mod 8. Otherwise it has no rational points.

(The quadratic forms

2m2 − 4mn + n2, 2m2 − 2mn + n2, and 2m2 + 2mn + n2

are nonzero for integers m,n, not both 0, since

2m2 − 4mn + n2 = (2m− n)2 − 2m2,

2m2 − 2mn + n2 = m2 + (m− n)2,

2m2 + 2mn + n2 = m2 + (m + n)2.)

We are interested, then, in relatively prime pairs (m,n), m nonnegative and
n odd, that satisfy the conditions of both parts of the lemma, for then there are
(infinitely many) rational points on r4 + s4 + t4 = 1 with u = 2m/n. The first
few such pairs are (0,−1), (0, 1), (4,−7), (8,−5), (12, 5), (8,−15), (4, 25), (20,−1),
(8,−27), (20,−9), and (12,−29). The first two yield u = 0, which we examined in
Section 2. Next we consider (m,n) = (4,−7), for which (5b,c) become

81y2 = −467x2 + 34x + 56,

±81t2 = −68x2 − 224x + 17.

However, these cannot simultaneously hold: If either the denominator of x or the
denominator of t is divisible by 5, then both denominators are divisible by 5. Re-
ducing modulo 125 then results in a contradiction under this assumption, namely
that ±117 is a square mod 125. Therefore the denominators of x, t, and (by a
similar argument) y are not divisible by 5. The right side −68x2 − 224x + 17 is
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± a square modulo 5 only if x ≡ 1 mod 5, but then −467x2 + 34x + 56 ≡ 3 mod 5
is not a square. Thus there are no rational solutions for u = −8/7.

We now try (m,n) = (8,−5), for which (5b,c) become the system

153y2 = −779x2 − 206x + 80,

±153t2 = 412x2 − 320x− 103,

which has rational solutions. The first conic has the rational point (3/14, 1/42),
and the line of slope k/3 passing through this point intersects it again at

(x, y) =
(

51k2 − 34k − 5221
14(17k2 + 779)

,−17k2 + 7558k − 779
42(17k2 + 779)

)
.(6)

Substituting this value of x into the second conic gives the equation

±212(17k2 + 779)2t2 = −4(31790k4 − 4267k3 + 1963180k2 − 974003k − 63237532).

With the change of variables X = (k + 2)/7, Y = 3(17k2 + 779)t/14, this becomes
the curve

(7) Y 2 = −31790X4 + 36941X3 − 56158X2 + 28849X + 22030,

where we have taken the plus sign since the right side reduces modulo 3 to (X2 +
X − 1)2 and −1 is not a square modulo 3. Elkies executed a computer search for
rational values of X that make the right side of (7) a perfect square and discovered
the point

(X0, Y0) =
(
− 31

467
,
30731278

4672

)
,

which gives the value k = 7X0 − 2 = −1151/467. Then the solution to (2) is

r = x + y =
68k2 − 3830k − 7442

21(17k2 + 779)
=

2682440
20615673

,

s = x− y =
85k2 − 3728k − 8221

21(17k2 + 779)
= −18796760

20615673
,

t =
14Y0

3(17k2 + 779)
=

15365639
20615673

.

Clearing denominators gives Elkies’s first solution to (1):

26824404 + 153656394 + 187967604 = 206156734.

4. Additional Solutions

Since (7) has the rational points P± = (X0,±Y0), it is an elliptic curve E. We
may use the group law on E to find additional rational points on E and thus
additional rational points on (2). Letting P− be the identity element of E(Q), the
point P+ is identified with Q = P+ − P−. As the Weierstrass form of E with
respect to the identity P− has coefficients much larger than those of (7), it is more
convenient to use coordinates X, Y rather than the Weierstrass coordinates. Rather
than computing in the group by secant and tangent lines, we accordingly compute
using secant and tangent parabolas Y = aX2 +bX +c. If such a parabola intersects
E in four points P1, P2, P3, P4 (counting multiplicity), then

aX2 + bX + c− Y

(X −X0)2
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is a rational function on E with divisor P1 + P2 + P3 + P4 − 2(P+ − P−), so

P1 + P2 + P3 + P4 = 2Q

in the group law. Given three points P1, P2, P3, we can find a, b, c so that the
parabola Y = aX2 + bX + c passes through these points. Then the X-coordinate
of the fourth point of intersection P4 of the parabola with E will be the fourth
root of a quartic equation with three known rational roots (the X-coordinates of
P1, P2, P3).

By this method we now compute the coordinates of −Q in the group law on E.
We put P1 = P2 = P3 = P+, so that P4 = 2Q− 3P+ = −Q. To obtain a parabola
that has triple contact with E at P+, we use the first few terms of the Taylor series
of Y at X = X0:

Y =
√
−31790X4 + 36941X3 − 56158X2 + 28849X + 22030

= Y0 + α(X −X0) + β(X −X0)2 + · · · ,

where one computes

α =
937766474523
467 · 15365639

,

β = −2096569897386251210893331
2 · 153656393

.

Then we let
aX2 + bX + c = Y0 + α(X −X0) + β(X −X0)2,

so that

a = −2096569897386251210893331
2 · 153656393

,

b =
334937219677623362815466

153656393
,

c =
1076124066222818157529571

2 · 153656393
.

Substituting aX2 + bX + c for Y in (7) gives the quartic equation

(aX2 + bX + c)2 = −31790X4 + 36941X3 − 56158X2 + 28849X + 22030,

which has a triple root at X = X0 and a fourth root

X =
127473934493966820221865642313563283
129759559485872431282952710668698569

as the X-coordinate of −Q. Unraveling the formulas for r, s, t in terms of X gives
the solution

A = 1439965710648954492268506771833175267850201426615300442218292336336633,

B = 4417264698994538496943597489754952845854672497179047898864124209346920,

C = 9033964577482532388059482429398457291004947925005743028147465732645880,

D = 9161781830035436847832452398267266038227002962257243662070370888722169.

One can continue in this manner to find additional rational points on (7), albeit
of increasing height. We can repeat the procedure, for example, with P1 = P2 =
P3 = −Q to compute 5Q, but whereas the height of −Q is on the order of 1070,
the height of 5Q is on the order of 10634.

One may ask if infinitely many solutions can be obtained from Q. This is the
question of whether Q is in the torsion subgroup E(Q)tors. By a theorem of Mazur
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(Theorem VIII.7.5 in [8]), E(Q)tors has order at most 12, so to show that Q has
infinite order it suffices to show that [n]Q 6= 0 for n = 2, 3, . . . , 12, and indeed this
is true. Therefore from the solution found in Section 3 we actually get infinitely
many primitive solutions to (1).

Of course, some of the other values of u listed in Section 3 yield additional
solutions. For example, Frye’s minimal solution

958004 + 2175194 + 4145604 = 4224814

lies on the curve given by (m,n) = (20,−9).
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